Error analysis for filtered back projection reconstructions in Besov spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bandlimited and Haar filtered back-projection reconstructions

A new way to discretize the filtered back-projection (FBP) algorithm is presented. The function basis is the Haar system (2D product of rectangular windows). This scheme allows one to derive the optimal shape of the apodisation window, which is angle varying, and the oversampling ratio between the pixel and the projection cell size. The discrete equivalent filter is also derived. The comparison...

متن کامل

Comparing IDREAM as an Iterative Reconstruction Algorithm against In Filtered Back Projection in Computed Tomography

Introduction: Recent studies of Computed Tomography (CT) conducted on patient dose reduction have recommended using an iterative reconstruction algorithm and mA (mili-Ampere) dose modulation. The current study aimed to evaluate Iterative Dose Reduction Algorithm (IDREAM) as an iterative reconstruction algorithm. Material and Methods: Two CT p...

متن کامل

Approximation by quasi-projection operators in Besov spaces

In this paper, we investigate approximation of quasi-projection operators in Besov spaces B p,q, μ > 0, 1 ≤ p, q ≤ ∞. Suppose I is a countable index set. Let (φi)i∈I be a family of functions in Lp(IR), and let (φ̃i)i∈I be a family of functions in Lp̃(IR), where 1/p+ 1/p̃ = 1. Let Q be the quasi-projection operator given by

متن کامل

Generalized Filtered Back-projection for Digital Breast Tomosynthesis Reconstruction

Filtered back-projection (FBP) has been commonly used as an efficient and robust reconstruction technique in tomographic X-ray imaging during the last decades. For limited angle tomography acquisitions such as digital breast tomosynthesis, however, standard FBP reconstruction algorithms provide poor results and give rise to image artifacts due to the limited angular range and the coarse angular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inverse Problems

سال: 2020

ISSN: 0266-5611,1361-6420

DOI: 10.1088/1361-6420/aba5ee